
Pre-synthesis Queue Size Estimation of Streaming Data Flow Graphs

S. Mondal, S. Ogrenci Memik, *N. Bellas
EECS Department, Northwestern University, Evanston, IL

*Motorola Labs, Schaumburg, IL

1. INTRODUCTION
All synthesis efforts targeting reconfigurable logic face the
challenge of creating designs that comply with the resource and
storage capacity of the target device. Hence, area cost estimation
is of significant importance in all stages of the hardware
compilation process, which is a translation of a behavioral
specification into a register-transfer level description. Data Flow
Graphs (DFGs) are widely used for representing such behavioral
descriptions. Area estimation techniques for compilation onto
reconfigurable hardware in literature focus mainly on the
functional unit (FU) area. In this work, we present an estimation
technique to assess the resource requirement for storage elements
in pipelined streaming architectures. Specifically, our proposed
technique tackles the problem of pre-synthesis estimation of data
queuing cost, while incorporating the potential impact of resource
and throughput constraints on the final implementation.
With the increasing popularity of portable devices, there is a
growing demand for multimedia applications. These applications
are computationally intensive (often highly parallel) and are often
streaming in nature. Reconfigurable logic is an effective medium
for creating pipelined hardware as well as for exploiting
parallelism. To create efficient hardware for streaming
applications functional pipelining has been shown to be very
effective and in such cases it is essential to register the inputs and
outputs of FUs. This is because a FU has to retain its results from
previous iterations (until they have been passed on to all
consumers), while it is busy computing for successive iterations.
Therefore, register queues at the outputs of FUs is one of the
major building blocks that enable communication between FUs.
The Reconfigurable Streaming Vector Processor (RSVP™ II1) [1,
2] is such a highly pipelined vector coprocessor architecture that
has been implemented on reconfigurable fabric with a limited set
of links (which implement the FIFO register queues). Hence, it is
imperative to incorporate these register queues in area estimation.
In this paper we propose a pre-synthesis register queue size
estimation technique for an unscheduled streaming DFG (sDFG)
for pipelined synthesis. Our estimation method first designates a
minimum queue size to each communication edge of the sDFG
based on the ALAP value of the source node and ASAP value of
the sink node of that edge. Our aim is to further refine this initial
minimum queue size estimation. Our main tool is based on the
likelihood estimation that the source node may actually be
producing data before its ALAP time, and likewise, the sink node
may actually be consuming data after its ASAP time. The
likelihood of the source and sink nodes of an edge being moved
up and down respectively during the actual scheduling depends
primarily on resource constraints of the design and criticality of
the nodes. In addition, it will be affected by the heuristics that a
particular scheduler is using to optimize the throughput by
reducing the register or interconnect pressure. Based on these
modified queues, each node is assigned the longest queue among
all its outgoing edge queue sizes. Finally, the queue size at each

1 RSVP is a trademark of Motorola Inc. Other product or service
names are the property of their respective owners.

node is modified based on the estimated iteration interval. Based
on such estimation the designer can assess at the pre-scheduling
stage whether the target architecture can keep up with the storage
requirements of the design. This can also be utilized to evaluate
the complexity/cost of implementing various computational
kernels on the target reconfigurable fabric. The best candidates
can then be identified based on this estimation.
In this abstract, we present our preliminary results motivating the
need for estimation. We compare pre-synthesis estimations on a
set of industrial image processing applications with the queue
sizes determined by Proteus2 scheduler for RSVP™ architecture,
which employs modulo scheduling to maximize the throughput of
a sDFG synthesized as a pipelined datapath.

2. QUEUE SIZE ESTIMATION
The input to the queue size estimation is an unscheduled
streaming DFG (sDFG) and a set of resource constraints. An
sDFG is a DFG where I/O and internal communication edges are
data streams, and not just simple variables. Also, no pointers,
“GOTO” statements, function calls, or recursion is allowed in an
sDFG. The total number of registers required for all nodes to
implement the design is the final output of the estimation process.
Figure 1 shows our register queue estimation flowchart. In the
next subsections we will first formulate the queue estimation
problem, and then discuss our approach in details. In the next
section we will present our experimental results, which will be
followed by our conclusions.

Input sDFG

Resource
Constraints

Estimate
Iteration Interval

Determine
ASAP and ALAP

Determine min.
queue for edges

Strech edges to
expand queues

Determine queue
size for each node

Output total queue
size for all nodes

Figure 1. Register queue size estimation flowchart

2.1 Procedure for Queue Size Estimation
Given, an unscheduled streaming data flow graph G = (V, E), and
a set of resource constraints R, our goal is to estimate, the total
number of registers in the queues of all nodes.
The first step of our estimation scheme is to determine the
iteration interval of an sDFG based on the resource constraints.
We assume that the sDFG does not have any cycle or in other
words no inter-iteration dependencies. The lower bound of the
iteration interval is estimated based on the technique presented by
Hwang et al. [3]. Let Ni be the number of operations of type i in
the sDFG, which can be implemented using a functional unit of
type i, and let Mi be the number of such functional units, then the

2 Proteus scheduler is developed at Motorola Inc.

lower bound of the iteration interval, ItIr, is given by max1≤i≤t
Ni/Mi, where t is the number of types of functional units.
The next step is to determine the ASAP and ALAP schedules of
the given sDFG. We have used the ASAP latency of the sDFG as
the upper bound latency of the ALAP schedule. Let ASAP(v) and
ALAP(v) be the ASAP and ALAP times of node v∈V. Once we
have both the ASAP and ALAP schedules, we designate
minimum queue sizes to each edge of the sDFG,
QedgeMin(i, j) = ALAP(i) − ASAP(j), i, j∈V, (i, j)∈E (1)
Our tool then refines these minimum queue sizes under the given
resource constraints. Figure 2 shows the probabilistic push-and-
pull queue expansion of an edge, where each node n is marked
with a set of values, [ASAP(n), ALAP(n), slack(n)], and slack(n) is
given by ALAP(n) − ALAP(n).
Now let us first consider node i. Node i can be pushed up by the
scheduler depending on various factors, such as criticality of node
i, resource constraints, and the number of more critical nodes of
the same type within cycles ASAP(i) and ALAP(i).

a b

i

j

C 1

C 2

C 3

C 4

C 5

C 10

C 11

C 12

m

n

[1, 1, 0] [1, 1, 0]

[1, 5, 4]

[10, 12, 2] [10, 10, 0]

[12, 13, 1]

max(∆j)

max(∆i)

pull

push

Figure 2. Probabilistic queue expansion by push-and-pull

Let P(i)k be the probability that node i is scheduled in cycle k. So,
assuming that i can be pushed up only until ASAP(i), we have,

1)(
)(

)(
=∑

=

=

iALAPk

iASAPk
kiP , (2)

0)(=kiP)()(iALAPkiASAPk >∨<∀ (3)
Assuming we have only one functional unit that can implement
operations a, b, and i, in that case, P(i)1 ≈ P(i)2 ≈ 0, because, as
nodes a and b are more critical than i, and we have only one
functional unit, it is extremely less likely that node i will be
scheduled in cycle 1 or 2. Also, assuming that the scheduler
primarily optimizes latency, we will have P(i)3 > P(i)4 > P(i)5,
since chances are high that the scheduler will pull up node i as
early as possible to minimize latency. We define ∆i as the amount
by which node i is pulled up. We compute the expected value of
∆i, based on P(i)k as,

∑
=

=
−=∆

)(

0
)()(][

islackk

k
kiALAPikPiE (4)

Similarly for node j, the scheduler will most likely push it down
because of resource constraints. In that case, for the same reasons
as above, we will have, P(j)10 ≈ 0, and P(j)12 > P(j)11. We define
∆j as the amount by which node j is pushed down. Likewise, we
calculate the expected value of ∆j as,

∑
=

=
+=∆

)(

0
)()(][

jslackk

k
kjASAPjkPjE (5)

Now, the new expanded queue size for each edge e(i, j) will be,
QedgeExpand(i, j) = QedgeMin(i, j) + E[∆i] + E[∆j] (6)
Note that up until now we have only mentioned about the queue
size of an edge, but what we are really trying to estimate is the
queue size at the output of each node. From this the estimated
queue size of a node i will be,
QnodeExpand(i) = max{QedgeExpand(i, j) : (i, j)∈E} (7)
Now, that we have QnodeExpand(i), because of the iteration
interval (ItIr) this will be reduced by a factor of ItIr. If ItIr equals
1, i.e. a new iteration starts every cycle, the queue sizes are
maximum. If ItIr equals 2, then a new iteration starts every other
cycle, and in that case the required queue size of all nodes are
halved and so on. Therefore, the final queue size of a node i is
given by,
Qnode(i) = QnodeExpand(i) / ItIr (8)
Finally, the total number of registers used by all the queues of the
sDFG will be given by,

∑
∈∀

=
Vi

nodenode iQsDFGQTot)())(((9)

3. EXPERIMENTAL RESULTS
The effectiveness of the proposed estimation scheme is evaluated
by comparing the queue sizes determined by the Proteus scheduler
and our estimation technique for a set of industrial applications.
The results presented in Table I assume E[∆i] = slack(i) and E[∆j]
= slack(j), which is practically the queue sizes if i is scheduled
ASAP and j in ALAP. We are currently investigating alternative
formulations for E[∆i] and E[∆j] for better accuracy.
Note that, these estimated queue sizes are for a given sDFG only.
In reality, several such kernels may be running concurrently and
in that case the queue sizes will be larger.

Table I. Register Estimation
Design # nodes Proteus Estimated % Error
dctCol 85 36 39 8.3
dctRow 95 42 43 2.4

hpf_med_cc 157 76 55 -27.6
lpf_gc_rgb 221 104 57 -45.2

lpr 67 58 38 -34.5
open 30 44 36 -18.2
quant 10 14 14 0.0

RsvpLPR 67 58 38 -34.5
RsvpLPR_u2 102 57 76 33.3

Average 92.7 54.3 44.0 -19.0

4. CONCLUSIONS
In this work we propose a probabilistic push-and-pull register
queue size estimation technique. A naïve estimation, which does
not take resource constraints into account, can differ from the
post-schedule results by as much as 45%. More precise
estimations for expected expansion in queue sizes, which take
resource constraints and other scheduler strategies into account is
in progress as presented in this abstract.

5. REFERENCES
[1] S. Chiricescu, R. Essick, B. Lucas, P. May, K. Moat, J. Norris, M.

Schuette, and A. Saidi, "The Reconfigurable Streaming Vector
Processor (RSVP™)," IEEE/ACM International Symposium on
Microarchitecture, 2003.

[2] S. Chiricescu, S. Chai, K. Moat, B. Lucas, P. May, J. Norris, R.
Essick, and M. Schuette, "RSVP II: A Next Generation
Automotive Vector Processor," 2005.

[3] C. Hwang, Y. Hsu, and Y. Lin, "PLS: A scheduler for pipeline
synthesis," IEEE Transactions on CAD/ICAS, vol. 12, pp. 1279-
1286, 1993.

